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Abstract

I show that when market participation is endogenous, decentralized and yet com-

petitive asset markets are prone to multiplicity of equilibria and inefficient fire sales

when subjected to large enough liquidity shocks and characterize conditions for the

existence of such fire sales. In the model sellers are subject to liquidity shock in the

present and future dates. There can be multiple equilibria: delayed equilibrium where

some agents wait to trade in the second period and run equilibrium where all agents

try to trade in the first period. Fire sale equilibrium, when asset price is depressed,

is a run (delayed) if the number of buyers is less (more) than sellers in the market.

The two types of equilibria and hence the possibility of fire sale exist when sellers’

future liquidity shock is bigger than the current shock and there is a medium degree

of imbalance between the buyers and sellers in the market. Moreover, fragility exists

when market liquidity is neither too high nor too low. Fire sale in the form of a run

equilibrium is always dominated in terms of welfare by its corresponding delayed equi-

librium with higher asset price. Fire sale in the form of delayed is dominated by its

corresponding run equilibrium as long as the ratio of sellers to buyers is not too low.
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1 Introduction

Fire sale in financial markets where assets are sold at deep discounts is a prominent feature

of financial crises. Two classic explanations emphasize liquidity constrained industry experts

who can operate the asset productively (Shleifer and Vishny (1992)) and limited arbitrage

capital by specialized investors who understand the asset (Shleifer and Vishny (1997)). Liq-

uidity constrained experts is less applicable to financial assets and as for the limited arbitrage

capital, there were non-specialized investors with abundant resources (e.g. Warren Buffet)

to buy these assets and its not clear why these investors did not step in.1 Moreover, not

all buyers which may be considered experts/specialized investors, e.g., banks, were liquidity

constrained during the crisis.2 Beside lack of liquidity or expertise, what else can help ex-

plain depressed asset prices during the crisis? Can non-fundamental factors explain at least

part of asset price volatility during the crisis?

Many financial assets, e.g., mortgage backed securities, as well as important real assets

such as property are traded in decentralized over the counter markets. I show that when

market participation is endogenous (and yet costless), decentralized markets are intrinsically

fragile and prone to inefficient fire sales when subjected to large enough liquidity shocks.

Fragility and fire sale require a medium degree of imbalance between buyers and sellers

and a medium degree of market liquidity. A brief description of the model is as follows.

Sellers and buyers can consume over three periods but sellers are assumed to have a higher

propensity to consume in the first two periods because they are in need of liquidity. One

can think of the sellers as banks or other financial entities that need to pay their short term

debts by liquidating assets in the market. Asset is indivisible and sellers hold one unit of

asset at the beginning while buyers can buy at most one unit of the asset. Limited capacity

of buyers may be due to tightening borrowing constraints in the financial market during a

period of financial stress. Buyers post prices in the submarkets and sellers choose the the

submarket and the corresponding price to maximize their utility. Sellers can choose a higher

price but at the cost of facing a lower probability of trade as higher prices attract more

sellers. There are two types of equilibria which I label delayed and run equilibria. A delayed

equilibrium is an equilibrium in which buyers or sellers are indifferent between participating

or not participating in the market at the first date. In other words some of buyers and

sellers may prefer to wait until the second period for trade. A run, on the other hand, is an

equilibrium where all buyers and sellers try to buy and sell in the market.

Market is said to be fragile, where the two types of equilibria namely run and delayed

1For a more detailed discussion see Dow and Han (2018).
2He, Khang, and Krishnamurthy (2010) show that there has been a sizable redistribution of leverage

across the financial markets rather than a uniform deleveraging in the banking system.
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coexist. When market is fragile, fire sale equilibrium is the equilibrium with the lower asset

price. A fire sale equilibrium may be of either type of equilibria: asset price falls either

because sellers run to sell immediately as they don’t expect to find many opportunities to

trade later or buyers delay their purchase in the hope of finding even more desperate sellers

in the future. If the number of buyers is less (more) than the sellers in the market, fire sale

happens in the form of a run (delayed) equilibrium. There are four critical elements making

an asset market fragile in the model: a decentralized (yet competitive) asset market where

agents can decide when to enter the market, liquidity shocks at current and future dates

which are increasing in magnitude over time and a medium degree of imbalance between

potential supply and demand for the asset as well as a market liquidity that is neither too

high nor too low. I show that equilibrium is unique in the absence of any of these elements.

Fire sale equilibrium is often Pareto inferior to the equilibrium with the higher asset price.

When there are multiple equilibria and if buyers are less than sellers, the run equilibrium is

always dominated by the delayed equilibrium in terms of welfare in that the former generates

a lower aggregate trade surplus than the latter. A social planner can create a Pareto superior

allocation to the run equilibrium by doing lump sum transfers in the delayed equilibrium and

therefore, run equilibrium is always inefficient in this case. In contrast, when sellers are less

than buyers and as long as the ratio of sellers to buyers is not too low, the run equilibrium

dominates delayed equilibrium and the latter is inefficient.

In a centralized market, where trade takes place with certainty, the effect of each agent’s

decision to enter the market on others is fully priced and there are no non-priced externalities.

But in a decentralized (yet competitive) market, on the other hand, agent’s decision to

participate affects the probability of trade at current and future dates. A competitive market

can price at most one of the two margins but not both. This leaves room for the presence

of non-priced externalities and coordination failure which is at the heart of market fragility.

To better understand these externalities, consider the case where there are more sellers

than buyers. In this case, a seller’s decision to wait to enter the market in the future

period increases market tightness, i.e., ratio of buyers to sellers, in both current and future

dates.3This implies higher probability of trade and hence higher payoff of participating at

the margin for other sellers as well as lower probability of trade and lower payoff for buyers at

both dates. If the increase in probability and hence welfare for other sellers and the decrease

in probability and welfare for buyers is lower in the future date, seller’s decision to wait will

encourage other sellers and buyers to wait as well. In other words, sellers and buyers decision

3Market tightness increases in the second period because the volume of trade, i.e., number of matches,
decreases in the initial period. The ration of remaining buyers to remaining sellers increases as the number
of sellers are higher in the market.
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to delay trade become complement which makes multiple equilibria a possibility. For this

to happen, the relative change in market tightness in current and future dates induced by a

seller’s decision to wait, should not be too high or too low: if its too high (too low) buyers

(other sellers) would prefer to trade on the initial date instead of waiting.

The relative marginal change in market tightness in turn depends on size of sellers rela-

tive to buyers as well as the matching efficiency which determines market liquidity. These

externailities can lead to market fragility and fire sale of the asset when there is a medium

degree of imbalance between buyers and sellers as well as market liquidity. In the limit when

the number of sellers and buyers are very close or too far apart, or market liquidity is too

high or too low, agents’ actions will not be complement. These externalities are the source

of inefficiency in the fire sale equilibria.

Another implication of the model is that when there are multiple equilibria, fire sale

prices coincide with lower (higher) volume of trade when sellers (buyers) are the short side

of the market. In other words, fire sale is accompanied by a surge in the volume of sales in the

market (a run equilibrium) only if there are too many sellers relative to buyers. In contrast,

when there are too few sellers, fire sale follows a decline in sales (a delayed equilibrium).

This is an empirically testable prediction.

1.1 Related Literature

Guerrieri and Shimer (2014) is a model of fire sale of assets in decentralized markets with

competitive search. Key features are competitive decentralized market and the presence of

private information about the quality of asset. There is a unique equilibrium in which sellers

signal quality of their asset by waiting longer for trade to take place. In contrast, in this

paper adverse selection doesn’t play any role.

Guerrieri (2010) is a model of competitive search in the labor market with private infor-

mation and limited commitment on the side of workers. Unlike typical models of directed

search, the equilibrium is inefficient outside the steady state. The reason is that firms offer-

ing contracts at a given point in time do not internalize their externality on workers’ outside

option in previous periods. Similar to Guerrieri (2010), an intertemporal externality is the

source of inefficiency and multiplicity in this model. However, the externality is from the

past actions on future probability of trade.

This paper is also related to the large body of research on multiple equilibria in currency

markets. Obstfeld (1996) provides a review of the relevant models. Unlike this model,

models of currency attacks feature centralized markets. The key ingredient which makes

the centralized market vulnerable to bad equilibria with large currency devaluations is the
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presence of a non-negligible strategic agent namely the government.

Bernardo and Welch (2004) is an example of a model of fire sale and run in a stock

market. Risk neutral investors fear that they need to liquidate shares after a run takes place

and before prices recover. This fear may force investors to sell today and may cause the run

itself. Similar to this model, future liquidity shocks play a key role in causing a run today.

2 Model

There are three periods t = 0, 1, 2 and two types of agents, measure 1 of buyers and m > 0

of sellers, trading an indivisible asset. The asset pays off its only dividend d2 > 0 units of

consumption goods at t = 2. Agents preferences are as follows:







US = δ0C0 + δ1C1 + C2 ,

UB = C0 + C1 + C2 ,

Where subscripts S and B indicate the seller and buyer. We assume that buyers have

big enough endowments in t = 0, 1 to pay for the asset.4 Both buyers and sellers can save at

the real rate of zero in t = 0, 1. Timing of events are as follows. In each period, both types

of agents first decide how much to save, then if they want to participate in the market and

finally consume whatever has not been saved or spent on market transactions.5

Coefficients δ0 and δ1 are seller’s marginal utility of consumption in periods t = 0, 1.

They capture a liquidity shock today, e.g., need to liquidate assets to pay off the debt, or an

expected liquidity shock tomorrow respectively. Therefore we make the following assumption:

Assumption 1. δ0 > 1 and δ1 > 1.

Sellers hold a unit of the asset in t = 0 and buyers may buy at most one unit of the asset

in either t = 0, 1. Note that given Assumption 1, buyers (sellers) have no incentives to sell

(buy) if they purchase the asset in the market at t = 0.

Trade takes place in a decentralized market in both t = 0, 1 with competitive search and

random matching. In each period, buyers post prices and form submarkets each of which

represent the subset of buyers who have posted the same price. Sellers of the asset observe

these prices and choose the submarket and the corresponding price to maximize their utility.

The buyers’ problem at t = 1 if she participates is:

4The value of sellers’ endowment is irrelevant due to risk neutrality.
5We can allow for saving after market transactions if we introduce risk aversion.
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V B
1 = maxσ1,p1 q

B
1 (σ1)(d2 − p1)

s.t. ŪS
1 ≤ qS1 (σ1)δ1p1 + (1− qS1 (σ1))d2

(1)

Buyer strictly prefers to participate in the market as long as V B
1 > RB

1 where RB
1 is the

reservation utility of the buyer at t = 1 and is equal to zero. If V B
1 = RB

1 buyer is indifferent

between participating and staying out of the market. σ1 is ratio of sellers to buyers or

the length of the queue for the submarket with posted price of p1. Moreover, qB1 and qS1 are

probabilities of being matched with a seller and buyer respectively in the submarket with the

queue length of σ1 which depends on the matching technology, i.e., market microstructure.

The participation constraint by the seller in the problem above requires that the seller’s

utility from trade is no less than the maximum, ŪS
1 , she can obtain outside the match where:

ŪS
1 = max(V S

1 , RS
1 )

Where V S
1 and RS

1 are sellers continuation utility from participating and reservation

utility of not participating in the market at t = 1. We note that RS
1 = d2. Using qB1 = σ1q

S
1

and that the participation constraint is binding in equilibrium, one has:







qS1 (σ1)(δ1p1 − d2) = ŪS
1 − d2 ⇒

δ1q
B
1 (σ1)(d2 − p1) = σ1(Ū

S
1 − d2)− (δ1 − 1)qB1 (σ1)d2

(2)

Hence one can simplify the buyers problem:

V B
1 = max

σ1

{ 1

δ1
((δ1 − 1)qB1 (σ1)d2 − σ1(Ū

S
1 − d2))

}

(3)

(4)

Similarly, the problem of buyers at t = 0 is:
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V B
0 = maxσ0,p0

{

qB0 (σ0)(d2 − p0) + (1− qB0 (σ0))Ū
B
1

}

s.t. ŪS
0 ≤ qS0 (σ0)δ0p0 + (1− qS0 (σ0))Ū

S
1

(5)

Where ŪB
1 = max(V B

1 , RB
1 ) is the maximum utility for buyers if they wait until t = 1.

Note that given our notation this is the reservation utility at t = 0 for buyers as well, i.e.,

RB
0 = ŪB

1 . And ŪS
0 is the maximum utility sellers can obtain in the market.

2.1 Competitive Search Equilibrium

For any measure s of sellers and b of buyers at any given period who are active in any of the

submarkets, the number of matches is given by:

M(s, b) = γs1−αbα , (6)

where 0 < α < 1 and 0 < γ < 1 is the efficiency of the matching function. Note that the

market liquidity of the asset is affected by both γ and m.

We restrict our parameters so that the implied probabilities will be always less than one:

Assumption 2. γ
1

α < m−γm1−α

1−γm1−α < γ
−1

1−α .

To solve for the equilibrium we start at t = 1. Using 3, the first order conditions (FOC)

for buyers at t = 1 are:



















(δ1 − 1)
dqB

1
(σ1)

dσ1

d2 = ŪS
1 − d2 ⇒

dqB
1
(σ1)

dσ1

=
ŪS
1
−d2

(δ1−1)d2

(7)

Given our matching technology 6, we have qB1 (σ1) = γσ1−α
1 , qS1 (σ1) = γσ−α

1 and hence

using 7 and 2 we can obtain the unique equilibrium price at t = 1:



















(δ1 − 1)d2 = δ1p1 − d2 ⇒

p∗1 =
1+(1−α)(δ1)

δ1
d2

(8)

6



Note that we have:

d2
δ1

< p∗1 < d2

As 0 < α < 1. This implies that both buyers and sellers strictly prefer to participate in

the market at t = 1. In other words ŪS
1 = V S

1 > RS
1 and ŪB

1 = V B
1 > RB

1 . Therefore, there

is a unique equilibrium price in the market at t = 1 with full participation of both buyers

and sellers.

Using 2 and the equilibrium price 8, we can obtain the continuation utilities ŪS
1 and ŪB

1

(or equivalently V S
1 and V B

1 ) as follows:



















ŪS
1 = V S

1 = (1 + (1− α)(δ1 − 1)γσ∗−α
1 )d2

ŪB
1 = V B

1 = α(δ1−1)
δ1

γσ∗1−α
1 d2

(9)

Turning to t = 0, we can use the participation constraint in 5, which must hold with

equality in equilibrium, to obtain:



















qS0 (σ0)δ0p0 = σ0(Ū
S
0 − (1− qS0 (σ0))) ⇒

qB0 (σ0)p0 =
σ0

δ0
(ŪS

0 − (1− qS0 (σ0)))

(10)

Since qB0 (σ0) = σ0q
S
0 (σ0). This simplifies the buyer’s maximization at t = 0:

V B
0 = max

σ0

{

qB0 (σ0)(d2 −
1

δ0
ŪS
1 − ŪB

0 )−
ŪS
0 − ŪS

1

δ0
σ0 + ŪB

1

}

(11)

The FOC for an interior solution with full participation is:



















(d2 −
1
δ0
ŪS
1 − ŪB

0 )
dqB

1
(σ0)

dσ0

=
ŪS
0
−ŪS

1

δ0
⇒

σ∗−α
0 =

ŪS
0
−ŪS

1

δ0γ(1−α)(d2−
1

δ0
ŪS
1
−ŪB

0
)

(12)
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Full participation requires d2−
1
δ0
ŪS
1 − ŪB

0 > 0 and ŪS
0 − ŪS

1 > 0. The price at t = 0 can

be obtained participation constraint of the seller at t = 0 and 12:

p∗0 = (1− α)(d2 − ŪB
1 ) + α

1

δ0
ŪS
1 (13)

(14)

Where ŪB
1 and ŪS

1 are given by 9. Full participation equilibrium, however, is not the

only possible outcome. Another type of equilibria may exist where agents are indifferent

between participating or staying out of the market at t = 0. This happens only when:



















ŪS
0 − ŪS

1 = 0,

d2 −
1
δ0
ŪS
1 − ŪB

0 = 0

(15)

Equations 15 imply that buyers cannot raise their lifetime utility by changing the proba-

bility or the price they post in the market. The term d2 −
1
δ0
ŪS
1 − ŪB

0 is total excess surplus

(conditional on trade taking place), a fraction α of which accrues to the buyer. It is evident

from the first equation in 15 that for buyers to be indifferent, sellers must be indifferent as

well. The second equation above is in terms of continuation utilities of sellers and buyers at

t = 1 which are given by 9. We can use 9 to obtain the following equation in the inverse of

market tightness at t = 1:

1

δ0
+

(1− α)(δ1 − 1)

δ0
γσ∗−α

1 +
α(δ1 − 1)

δ1
γσ∗1−α

1 = 1 (16)

Any solution to 17 pins down the market tightness and continuation utilities at t = 1.

We will examine later the conditions under which 17 admits a feasible solution. To save

space, it is convenient to define the following function for future reference:

Definition 1. Function f(σ) is defined as:

f(σ) ≡
1

δ0
+

(1− α)(δ1 − 1)

δ0
γσ−α

1 +
α(δ1 − 1)

δ1
γσ1−α

1 , (17)

The market price will be given by the sellers’ participation constraint in 5 combined with
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15:



















p∗∗0 = 1
δ0
ŪS
1 ⇒

p∗∗0 =
{

1
δ0
+ (1−α)(δ1−1)

δ0
γσ∗−α

1

}

d2

(18)

The following defines a competitive search equilibrium in the model:

Definition 2. An equilibrium is a set of prices, probabilities of trade in the market, (inverse

of) market tightness, measures of sellers and buyers participating in the markets and utilities

at t = 0, 1, denoted by {p∗t , q
∗j
t , σ∗

t , µ
∗j
t , V j

t } for t = 0, 1 and j ∈ {B, S}, such that σ∗

0 =
µ∗S
0

µ∗B
0

and σ∗

1 =
µ∗S
1

µ∗B
1

and sellers and buyers are maximizing their welfare according to 1, 3, 7, 5 and

12 and µ∗S
0 = m if V S

0 > RS
0 and µ∗B

0 = 1 if V B
0 > RB

0 .

Before moving to the next section, we can define some of the notions which will be used

throughout:

Definition 3. Given a set of parameters, {m, γ, δ0, δ1}, market is said to be fragile or

subject to run, if both full participation and limited participation equilibria exist. When

market is fragile we call the equilibrium with full and limited participation a run and delayed

equilibrium denoted by subscripts R and D respectively. The strictly lower price at t = 0

between the run and delayed equilibria (p∗0D or p∗0R) is called a fire-sale price.

2.2 Fragility and Fire-Sale

We have characterized competitive equilibria in the previous section. In this section, we

examine the conditions under which markets are fragile and whether and when any fire-sale

takes place.

First, we want to characterize the behavior of the price at t = 0 for the delayed and run

equilibria when we have fragility in the market. We restate the equilibrium price for the full

participation, i.e., run, equilibrium:



















p∗0 = (1− α)(d2 − ŪB
1 ) + α 1

δ0
ŪS
1 ⇒

p∗0(σ
∗

1) =
{

(1− α)
(

1− α(δ1−1)
δ1

γσ∗1−α
1

)

+ α
δ0

(

1 + (1− α)(δ1 − 1)γσ∗−α
1

)}

d2

(19)
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The above equation for the price at t = 0 holds across different equilibria: for the delayed

equilibrium the equation collapses to 18 as we have d2 − ŪB
1 = 1

δ0
ŪS
1 . Taking the derivative

with respect to the (inverse of) market tightness gives:

dp∗0(σ
∗

1)

dσ∗

1

=
(

−
α

δ0
σ
∗−(1+α)
1 −

1− α

δ1
σ∗−α
1

)

d2 < 0 (20)

Hence the change in price at t = 0, when agents switch from one equilibrium to another,

depends on the change in σ∗

1 . As the equilibrium in the market at t = 1 always entails full

participation of buyers and sellers we have:

σ∗

1 =
m− ν0
1− ν0

(21)

Where ν0 is the total number of matches formed or the volume of trade in t = 0. We note

that
dσ∗

1

dν
> 0 if and only if m > 1. We know that full participation always has the highest

volume of trade and therefore we can summarize the results as follows:

Lemma 1. Whenever we have market fragility, the following hold for the delayed and run

equilibria:

p∗R0 < p∗D0 ⇐⇒ m > 1

Where superscripts D and R denote delayed and run equilibria. In other words, we have

fire sale either in a run equilibrium where m > 1 or in a delayed equilibrium where m < 1.

Moreover, ν0 or the volume of trade at t = 0 is higher when the price is higher if and only if

m < 1.

When there are more (less) sellers than buyers in the market, the run equilibrium has

a lower (higher) price than the delayed as more participation in the market at t = 0 lowers

(raises) the continuation value and therefore the current market price. The latter is true

because when m > 1 (m < 1) the resulting market tightness at t = 1 is a decreasing

(increasing) function of the volume of trade at t = 0.
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2.2.1 Conditions for Fragility

Before any further analysis, its helpful to take a look at a benchmark where trade takes place

in a centralized competitive asset market:

Lemma 2. (Centralized market as a benchmark) In a centralized competitive asset market,

and except for the knife-edge case of m = 1, the equilibrium prices at which trade takes place

are unique. When m > 1 the following are true. All trades take place in t = 0 at p0 = d2/δ0

if δ0 > δ1 or in t = 1 at p1 = d2/δ1 if δ0 < δ1. And p0 = p1 = d2/δ0 = d2/δ1 and the volumes

of trade in t = 0, 1 are indeterminate if δ0 = δ1. In this case buyers enjoy all of the trade

surplus. When m < 1 all trades take place in t = 0 at p0 = d2 when δ1 < δ0 and sellers

enjoy all of trade surplus. When δ1 = δ0 we have p0 = d2 but the volume of trade at t = 0

is indeterminate. Finally if δ1 > δ0 no trade takes place at t = 0 and asset is traded only at

t = 1.

The above lemma implies that market fragility, at least within this setup, is not a feature

of centralized trading. This is because there are no externalities and no possibility of coor-

dination failure among sellers or buyers. When sellers and buyers can trade with certainty if

they choose to, delaying trade by one agent at t = 0 has no externality on others’ decisions

as it doesn’t affect the probability of trade for other agents.

By contrast, in a decentralized market each agent’s decision to participate at t = 0 may

change the probability of trade at both dates, t = 0, 1, for others. The following lemma

establishes the existence of multiplicity at t = 0:

Lemma 3. There are potentially two types of equilibria with strictly positive volume of trade

at t = 0 in the model. One type features a unique full participation equilibrium that is

characterized by 8, 9, 12, 13 and the following additional conditions:











































V S
0 > RS

0 , V B
0 > RB

0 , µ∗S
0 = m, µ∗B

0 = 1,

µ∗S
1 = m− γm1−α, µ∗B

1 = 1− γm1−α

σ∗

1 = m−γm1−α

1−γm1−α , σ∗

0 = m

In the second type or the limited participation equilibria, sellers and buyers are indifferent

between participating in the market and staying out of the market at t = 0. Equilibrium

prices and utilities at t = 0, 1, (inverse of) tightness measure and hence probabilities of

finding a partner at t = 1 are pinned down using 9, 8, 15, 17, 18 and the following additional
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conditions:



















γµ∗S
0

1−α
µ∗B
0

α
=

m−σ∗

1

1−σ∗

1

, σ∗

0 =
µ∗S
0

µ∗B
0

µ∗S
1 = m− γµ∗S

0
1−α

µ∗B
0

α
, µ∗B

1 = 1− γµ∗S
0

1−α
µ∗B
0

α

Unlike random search, competitive search allows the intratemporal effect of each agent’s

action to be fully priced in the market. But the intertemporal effect of agent’s decision at

t = 0 on others agents’ probability of trade and continuation utility at t = 1 is not fully

captured by price mechanism at t = 0. This is the source of coordination problems and

multiplicity in the model.

δ0

δ
1

Fragility and Liquidity Shocks

1.2 1.4 1.6 1.8 2.0 2.2 2.4

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Figure 1: The region with red illustrates the values of liquidity shocks for which markets are
fragile for α = 0.55 and γ = 0.3.

We now turn to the conditions for the existence of multiple equilibria. To this end, we

need to make the following assumptions:
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Assumption 3. We have f(γ
−1

1−α ) > 1, f(γ
1

α ) > 1.

The first two inequalities in 3 ensures that limited participation equilibrium exists at least

for some values of m. The following proposition characterizes the conditions on liquidity

shocks for the existence of fragility in the market:

Proposition 1. Given 3, the necessary and sufficient condition in terms of the liquidity

shocks δ0 and δ1 that ensure the existence of fragility in the asset market at least for some

values of m is:

f(
δ1
δ0
) < 1 ⇐⇒ γ

(δ1
δ0

)

−α
<

δ0 − 1

δ1 − 1
,

The above condition implies:

1 <
δ1
δ0

< γ
−1

1−α ,

Moreover there is no fragility for m < 1, if f(1) > 1.

Proposition 1 states that to have fragility in the market the future liquidity shock should

not be too high or too low. For fixed levels of m and current liquidity shock, δ0, an increasing

δ1 changes the profile of equilibria as follows. For low levels of δ1, the only equilibrium is the

full participation equilibrium. As δ1 increases further and within the medium range of the

future liquidity shock indicated by Proposition 1, both types of full and limited participation

equilibria exist and market becomes fragile. Increasing δ1 even further leads to an equilibrium

in which there is no trade at t = 0.

This is similar to other environments such as models of currency attacks where multiple

equilibria is an outcome when fundamentals are within a medium range, i.e., not too weak

or too strong. It is also important to note that a higher liquidity shock today, makes it less

likely to have market fragility. A non-extreme value of δ1/δ0 is needed for fragility because

opportunities to trade in the current and future dates should be of relatively comparable

values. This has to be the case for the externalities of each agent’s decision to trade to have

any effect on others.

The next result shows how fragility depends on m, the ratio of sellers to buyers or the

size of (potential) supply relative to demand for the asset. Using Proposition 1, we restrict
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our attention to the case f(1) < 1 where markets with m < 1 can also be fragile6:

Proposition 2. Assume that f(1) < 1. Given a set of all other parameters, {γ, δ0, δ1},

there exist a quadruple {m,m,m,m} satisfying:



















γ
1

α < m < m < 1,

1 < m < m < γ
−1

1−α

such that markets are fragile if and only if m satisfies one of the two following conditions:



















m < 1, m < m < m,

m > 1, m < m < m

The above proposition suggests that there should be a minimum imbalance between the

supply and demand for the asset for the market to be fragile. This is because when m is

close to one, participation decisions at t = 0 by agents don’t have any substantial impact

on the (inverse of) market tightness, σ∗

1, at t = 1: in the limit when m = 1, there will be no

impact and σ∗

1 = 1 regardless of what happens in the market at t = 0.

Finally, we examine whether more or less liquid markets are prone to fragility. We focus

on the case m < 1, where fire-sale can happen only by switching from a run to a delayed

equilibrium. Given m < 1, the main parameter determining market liquidity in the model

is γ. Higher values of γ means higher probability of being matched to a trading partner

and hence higher market liquidity (given a certain level of participation). Fixing all other

parameters one can derive the following conditions for values of γ for which markets are

fragile:

Lemma 4. For a given set of parameters {α, δ0, δ1, m}, the matching efficiency, γ, has to

satisfy the following necessary conditions for the existence of multiple equilibria:

mα(δ0 − 1)δ1
((1− α)δ1 + αmδ0)(δ1 − 1)

≤ γ ≤
(δ0 − 1)δ1

((1− α)δ1 + αδ0)(δ1 − 1)

6
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m

δ
1

Fragility and Sellers to Buyers Ratio

0.7 1.2 1.7 2.2 2.7 3.2 3.7 4.2 4.7

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Figure 2: The blue region illustrates the values of m for any level of δ1 for which markets
are fragile. Note that δ0 = 1.6, α = 0.5 and γ = 0.45.

Too liquid or too illiquid markets don’t feature multiplicity or fire-sale. In a too illiq-

uid market, agents’ decision to participate doesn’t have strong externalities on others as

the probability of trade is low. This reduces the scope for coordination failure and hence

multiplicity.

MORE ANALYSIS TO BE DONE

2.3 Welfare Analysis

In this section, we look at the welfare properties of different types of equilibria in the presence

of fragility. To this end and as the utilities are linear and transferable, we can assume a

planner who aims at maximizing the aggregate sum of the trade surplus in units of time zero

consumption goods. This amounts to summing up the consumption equivalent of utilities of

all agents:

15



W ≡ ŪB
0 +

m

δ0
ŪS
0 (22)

The planner can make lump sum taxes and transfers at t = 0 to improve sellers and

buyers welfare. The following lemma shows how we can rank equilibria according to the

welfare measure defined in 22:

Lemma 5. If Wi and Wj are total welfare for two different equilibria i and j where Wj > Wi,

the planner can design transfers in j to achieve an allocation j′ that is Pareto superior to i.

We now derive the total welfare in the case of full participation. Using the objective

function 5 and FOC of the full participation equilibrium in 12 we have:



















ŪB
0 = γσ∗1−α

0

(

d2 −
1
δ0
ŪS
1 − ŪB

1

)

− (1− α)γσ∗1−α
0

(

d2 −
1
δ0
ŪS
1 − ŪB

1

)

+ ŪB
1 ,

1
δ0
ŪS
0 = (1− α)γσ∗−α

0

(

d2 −
1
δ0
ŪS
1 − ŪB

1

)

+ 1
δ0
ŪS
1

(23)

Using the fact that in a full participation equilibrium σ∗

0 = m, we can compute the welfare

by adding the two terms in 23 and simplifying as follows:

W =
(

ŪB
1 +

ŪS
1

δ0
m
)

+ γm1−α
(

d2 −
1

δ0
ŪS
1 − ŪB

1

)

(24)

The first term in 24 is the sum of (time zero consumption equivalent) reservation utilities

of both sellers and buyers. The second term is the product of total number of transactions

at t = 0 which is γm1−α and the total trade (extra) surplus of a match between a seller and

a buyer.

Note that when there is multiplicity, 24 can be applied to both run and delayed equilibria.

In the case of a delayed equilibrium, the extra surplus d2 −
1
δ0
ŪS
1 − ŪB

1 is equal to zero and

total welfare is equal to the sum of continuation utilities. Therefore, and based on Lemma 5,

we can use this measure to rank different equilibria when there is fragility. The following

proposition establishes the main result of this section:

Proposition 3. Given a set of parameters {γ, δ0, δ1} for which market is fragile, the

16



following are true for the run and delayed equilibria. When m > 1:

m > 1 ⇒ WD(m, γ, δ0, δ1) > WR(m, γ, δ0, δ1)

And there exists 0 < ξ < 1 such that for m < 1:

ξ ≤ m < 1 ⇒ WD(m, γ, δ0, δ1) < WR(m, γ, δ0, δ1)

Where WR and WD denote the welfare for the run and delayed equilibria respectively.

Lemma 5 and Proposition 3 imply that the run and delayed equilibria can be ranked

according to welfare in a meaningful sense. We note that when market is fragile, the equi-

librium with the fire sale price is typically worse in terms of welfare:

Corollary 1. When market is fragile, the equilibrium with fire sale has the lower welfare

for all m > ξ where ξ < 1 is defined above.

Proposition 4.

Proposition 5.

3 Effects of Monetary Policy

4 Conclusion
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A Appendix: Proofs

Proof of Lemma 1. For the last part of the proposition, note that we have νR
0 > νD

0 ,

which in the case of m < 1 implies:

σ∗R
1 =

m− νR
0

1− νR
0

<
m− νD

0

1− νD
0

= σ∗D
1

Given the derivations in the text, this implies that p∗R0 > p∗D0 . The rest of the proposition is

proven in the text.

Proof of Lemma 2. We solve the equilibrium backward. Suppose that 1 − s and m− s

are measures of buyers and sellers at t = 1 who haven’t already traded in the market, where

s is the volume of trade at t = 0.

Consider the case of m > 1 first. Let p1 denote the price in the market at t = 1. The

demand curve for asset is:











































0 ≤ p1 < d2 ⇒ ad1(p1) = 1− s

p1 = d2 ⇒ ad1(p1) ∈ [0, 1− s]

p1 > d2 ⇒ ad1(p1) = 0

Similarly supply curve at t = 1 is:











































0 ≤ p1 <
d2
δ1

⇒ as1(p1) = 0

p1 =
d2
δ1

⇒ as1(p1) ∈ [0, m− s]

p1 >
d2
δ1

⇒ as1(p1) = m− s

Where ad and as are demand and supply for the asset. It is easy to check that the only

equilibrium price at t = 1 where supply and demand for the asset are equal is p1 =
d2
δ1
. And

in equilibrium all 1− s buyers participate in the market while only 1− s measure of sellers

trade and the rest m − 1 stay out (and they will be indifferent between the two options).
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Moving to t = 0, the demand supply are:











































0 ≤ p0 <
d2
δ1

⇒ ad0(p0) = 1

p0 =
d2
δ1

⇒ ad0(p0) ∈ [0, 1]

p0 >
d2
δ1

⇒ ad0(p0) = 0

Similarly supply curve at t = 0 is:











































0 ≤ p0 <
d2
δ0

⇒ as0(p0) = 0

p0 =
d2
δ0

⇒ as0(p0) ∈ [0, m]

p0 >
d2
δ0

⇒ as0(p0) = m

It is easy to see that equilibrium price and quantities are as follows:











































δ0 > δ1 ⇒ p0 =
d2
δ0
, as0 = ad0 = 1

δ0 = δ1 ⇒ p0 =
d2
δ0
, as0 = ad0 ∈ [0, 1]

δ0 < δ1 ⇒ p0 ∈ [d2
δ1
, d2
δ0
], as0 = ad0 = 0

Therefore whenever there is any trade at t = 0, the equilibrium price is unique and equal to
d2
δ0
.

Now consider the case of m < 1. Demand and supply curves at t = 1 are defined as

before. But because m < 1, the unique price will be p1 = d2. At t = 0 we have:











































0 ≤ p0 < d2 ⇒ ad0(p0) = 1

p0 = d2 ⇒ ad0(p0) ∈ [0, 1]

p0 > d2 ⇒ ad0(p0) = 0
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Similarly supply curve at t = 0 is:











































0 ≤ p0 <
δ1d2
δ0

⇒ as0(p0) = 0

p0 =
δ1d2
δ0

⇒ as0(p0) ∈ [0, m]

p0 >
δ1d2
δ0

⇒ as0(p0) = m

And therefore the equilibrium in this case will be:











































δ0 > δ1 ⇒ p0 = d2, as0 = ad0 = m

δ0 = δ1 ⇒ p0 = d2, as0 = ad0 ∈ [0, m]

δ0 < δ1 ⇒ p0 ∈ [d2,
δ1d2
δ0

], as0 = ad0 = 0

And again whenever there is trade at t = 0, the equilibrium price is unique which completes

the proof.

Proof of Lemma 3. Given 11, if d2 −
1
δ0
ŪS
1 − ŪB

0 < 0 then σ∗

0 = 0 is optimal for buyers

which implies no trade at t = 0. Hence we focus on the case d2 −
1
δ0
ŪS
1 − ŪB

0 ≥ 0.

Consider the case of d2 −
1
δ0
ŪS
1 − ŪB

0 > 0 first. In this case, if ŪS
0 − ŪS

1 = 0 buyers will

set qB0 (σ
∗

0) = 1. This needs either m ≤ γ
1

α or m ≥ γ
−1

1−α which cannot be the case given

Assumption 2. To see this note that m > m−γm1−α

1−γm1−α for m < 1 and m < m−γm1−α

1−γm1−α for m > 1.

Therefore, we need to have ŪS
0 − ŪS

1 > 0. This implies the FOC in 12 are the optimality

conditions for buyers. Solving for ŪB
0 and ŪS

0 gives:



























ŪB
0 = αγσ∗1−α

0

(

d2 −
1
δ0
ŪS
1 − ŪB

0

)

+ ŪB
1

ŪS
0

δ0
= (1− α)γσ∗−α

0

(

d2 −
1
δ0
ŪS
1 − ŪB

0

)

+
ŪS
1

δ0

This shows that V B
0 = ŪB

0 > ŪB
1 and V S

0 = ŪS
0 > ŪS

1 and that there is full participation by

buyers and sellers in equilibrium. Hence in equilibrium we have σ∗

0 = m which also implies
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σ∗

1 = m−γm1−α

1−γm1−α and:



















µ∗S
0 = m, µ∗B

0 = 1,

µ∗S
1 = m− γm1−α, µ∗B

1 = 1− γm1−α

Now consider the case d2−
1
δ0
ŪS
1 −ŪB

0 = 0. We must have ŪS
0 −ŪS

1 = 0, otherwise buyers will

not enter the market and there will be no trade at t = 0. Therefore, in this case both buyers

and sellers are indifferent between participating in or staying out of the market at time zero.

If there exists a solution to d2 −
1
δ0
ŪS
1 − ŪB

0 = 0 in terms of σ∗

1 such that σ∗

1 ∈ [m−γm1−α

1−γm1−α , m]

when m < 1 or σ∗

1 ∈ [m, m−γm1−α

1−γm1−α ] when m > 1, we will have the following:

σ∗

1 =
m− γµ∗S

0
1−α

µ∗B
0

α

1− γµ∗S
0

1−α
µ∗B
0

α
⇒ γµ∗S

0

1−α
µ∗B
0

α
=

m− σ∗

1

1− σ∗

1

Which completes the proof.

Proof of Proposition 1. Taking the derivative of f(σ1) gives:

f ′(σ1) =
α(1− α)(δ1 − 1)

δ1
γσ

−(1+α)
1

{

σ1 −
δ1
δ0

}

We note that f(σ1) is strictly decreasing for σ1 <
δ1
δ0

and strictly increasing for δ1
δ0

< σ1 and

has a minimum at δ1
δ0
. By Assumption 3, we know that f takes values higher than one at

the boundaries. Hence the necessary and sufficient condition for the existence of a root is

f( δ1
δ0
) < 1. This implies:



























f( δ1
δ0
) = 1

δ0
+ γ

(

δ1
δ0

)

−α

δ1−1
δ0

< 1 ⇐⇒

γ

(

δ1
δ0

)

−α

< δ0−1
δ1−1
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It is easy to verify that Assumption 3 and Assumption 2 imply δ1 > δ0. This and the above

conditions give:

γ

(

δ1
δ0

)

−α

<
δ0 − 1

δ1 − 1
<

δ0
δ1

⇒
δ1
δ0

< γ
−1

1−α

Therefore 1 < δ1
δ0

< γ
−1

1−α . Finally, if m < 1 we have γ
1

α < m−γm1−α

1−γm1−α < m < 1 (Assumption 2).

If f(1) > 1, all values of f in [γ
1

α , 1] are strictly higher than one and hence there’s no

σ1 ∈ [m−γm1−α

1−γm1−α , m] for which f(σ1) = 1. This completes the proof.

Proof of Proposition 2. Let’s define the function ζ(m) ≡ m−γm1−α

1−γm1−α . Taking the derivative

we have:

ζ ′(m) =

{

1−
(

αγm1−α + (1− α)γm−α
)

}

1

(1− γm1−α)2
> 0

The inequality above holds because γm1−α and γm−α are always less than one by Assump-

tion 2. Moreover we have ζ(1) = 1 and ζ(0) = 0. Hence ζ : [0, 1] → [0, 1] is an isomorphism

and has a well defined inverse on [0, 1]. Moreover, ζ : [1, γ
−1

1−α ) → [1,∞) is also an isomor-

phism strictly increasing for 1 < m < γ
−1

1−α .

Consider the case of m < 1 first. And let σ̃1 be the solution to 15 which amounts

to f(σ̃1) = 1. We know that γ
1

α < σ̃1 < 1 exists because f(1) < 1 and f(γ
1

α ) > 1 by

Assumption 3. We know from the proof of Proposition 1 that f is strictly decreasing for

m < 1. Also we must have that σ̃1 ∈ [ζ(m), m] (note that ζ(m) < m for m < 1) which

implies:

f(m) < f(σ̃1) < f(ζ(m)) ⇒ ζ(m) < σ̃1 < m ⇒ σ̃1 < m < ζ−1(σ̃1)

Given that f(σ̃1) = 1 and that ζ is an isomorphism which also imply that ζ−1(σ̃1) < 1.

Next consider the case when m > 1. Let ˜̃σ1 ∈ [ δ1
δ0
, γ

−1

1−α ] be the solution to f(˜̃σ1) = 1.

We know that such solution exists because of Assumption 3, that f( δ1
δ0
) < f(1) = 1 since f

is minimized at δ1
δ0

and that f is strictly increasing for [ δ1
δ0
, γ

−1

1−α ] (Proposition 1). We must

also have ˜̃σ1 ∈ [m, zeta(m)] which implies δ1
δ0

< ζ(m). This gives:

f(˜̃σ1) < f(ζ(m)) ⇒ ˜̃σ1 < ζ(m) ⇒ ζ−1(˜̃σ1) < m < ζ−1(γ
−1

1−α ) < γ
−1

1−α

The last inequalities are the results of Assumption 2 and the fact that m < ζ(m) for m > 1.

˜̃σ1 >
δ1
δ0

> 1 and hence 1 < ζ−1(˜̃σ1) which completes the proof.
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Proof of Lemma 4. m < 1 implies that at time t = 1 inverse of market tightness σ1

satisfies m ≤ σ1 ≤ 1. Using the proof of Proposition 1, we know that function f(σ1)

is strictly decreasing for σ1 ∈ [m, 1]. This implies that f(σ1) = 1 has a solution within

σ1 ∈ [m, 1] if and only if f(1) ≤ 1 and f(m) ≥ 1. These last two conditions can be written

as:



















1
δ0
+
{ (1−α)(δ1−1)

δ0
+ α(δ1−1)

δ1

}

γ ≤ 1

1
δ0
+
{

(1−α)(δ1−1)
δ0

m−α + α(δ1−1)
δ1

m1−α
}

γ ≥ 1

Taking γ to one side in above and simplifying yields:

mα(δ0 − 1)δ1
((1− α)δ1 + αmδ0)(δ1 − 1)

≤ γ ≤
(δ0 − 1)δ1

((1− α)δ1 + αδ0)(δ1 − 1)

Proof of Lemma 5. To see this suppose Wj − Wi = ∆ > 0. Let ŪB
0j − ŪB

0i = ǫ and

ŪS
0j− ŪS

0i = η. If both ǫ and η are positive, j Pareto dominates i and no transfers are needed.

Suppose without loss of generality that ǫ > 0 but η ≤ 0. We know by assumption that

ǫ+ η

δ0
m = ∆ > 0. The planner can give a lump sum subsidy equal to − η

δ0
to the sellers while

levy a tax equal to − η

δ0
m on buyers in equilibrium j to achieve a new allocation j′. Then

we will have:



















ŪS′

0j′ = ŪS
0j − η = ŪS

0i,

ŪB′

0j′ = ŪB
0j +

η

δ0
m = (ŪB

0i + ǫ) + η

δ0
m = ŪB

0i +∆ > ŪB
0i

Hence in the new allocation j′, buyers are strictly better off and sellers are at least as well

off. This implies that j′ is Pareto superior to i.
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Proof of Proposition 3. Using 9 and 24 we can rewrite the the welfare as a function of

the (inverse of) market tightness at t = 1:

W =
{

γm1−α +
m− γm1−α

δ0
+

(1− α)(m− γm1−α)(δ1 − 1)

δ0
γσ∗−α

1 +

α(δ1 − 1)(1− γm1−α)

δ1
γσ∗1−α

1

}

d2

Taking the derivative of W with respect to σ∗

1 gives:

dW

dσ∗

1

=
α(1− α)(δ1 − 1)(1− γm1−α)

δ1
γσ

∗−(1+α)
1

{

σ∗

1 −
δ1
δ0

m− γm1−α

1− γm1−α

}

d2

It is evident that W is strictly decreasing for σ∗

1 < δ1
δ0

m−γm1−α

1−γm1−α and strictly increasing for

σ∗

1 > δ1
δ0

m−γm1−α

1−γm1−α and has a minimum at σ∗

1min = δ1
δ0

m−γm1−α

1−γm1−α .

When m > 1, we have:

σ∗D
1 < σ∗R

1 =
m− γm1−α

1− γm1−α
< σ∗

1min

Where σ∗R
1 and σ∗D

1 are the (inverse of) market tightness at t = 1 for the run and delayed

equilibria. The last inequality follows from δ0 < δ1. This implies that WD > WR. For the

case of m < 1, we know that σ∗R
1 = m−γm1−α

1−γm1−α < σ∗D
1 < m. If m ≤ σ∗

1min we have WR > WD

because W is strictly decreasing on the left of σ∗

1min. We show that there is a threshold

0 < ξ < 1 for which m ≤ σ∗

1min as long as m ≥ ξ. To this end define:

ξ(m) ≡
m− γm1−α

1− γm1−α
/m

Taking derivative with respect to m gives:

ξ′(m) =

{

1−

(

αγm1−α − 1

αγm1−α

)(

1− γm−α

m−1 − γm−α

)}

αγm−(1+α)

m−1 − γm−α

We note that the first term above is always strictly positive for all 0 < m < 1 and hence

ξ′(m) > 0 and ξ(m) is strictly increasing. Hence we have:

m ≤
δ1
δ0

m− γm1−α

1− γm1−α
⇐⇒ ξ(m) ≥

δ0
δ1

⇐⇒ m ≥ ξ−1(
δ0
δ1
)

We also note that limm→0 ξ(m) = 0 which implies that ξ(m) is an isomorphism on [0, 1] and
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so it has an inverse on [0, 1]. Hence the threshold is ξ = ξ−1( δ0
δ1
) < 1. This completes the

proof.
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